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ABSTRACT

A systematic procedure is presented for constructing the character table of a given
finite group. The use of this procedure makes the task of computing group character
tables more straightforward than previously published procedures. Each step in the con-
struction of the character tables is illustrated by worked out examples. An appendix of

group tables, character tables, and class algebra tables for many of the common finite
groups is included.




AN EFFICIENT METHOD FOR COMPUTATION OF CHARACTER
TABLES OF FINITE GROUPS
by Gabriel Allen

Lewis Research Center

SUMMARY

A systematic procedure is presented for constructing the character table of a given
finite group. The use of this procedure makes the task of computing group character
tables more straightforward than previously published procedures. Each step in the con-
struction of the character tables is illustrated by worked out examples. An appendix of
group tables, character tables, and class algebra tables for many of the common finite
groups is included.

INTRODUCTION

The reader should be familiar with elementary group theory at least to the extent of
knowing the definition of common terms (ref. 1). The application of group theory to phys-
ical and chemical problems is now common. Group theory is a systematic and efficient
way of exploiting the symmetry in physical systems to avoid duplication of computation.
Once the collection of symmetry elements has been identified as a known group (this iden-
tification is often tantamount to a geometric exercise), the character table and irreducible
representations are the most useful properties of the group.

The determination of character tables (CT) and irreducible representations (IR) are
standard topics of elementary group theory (refs. 2 and 3). However, most descriptions
of these procedures appear to depend on an intuitive feeling about each particular group.
For this reason, a systematic and efficient procedure for constructing character tables of
finite groups is presented. The procedure is due to Harter (ref. 4) and does not seem to
be well known.

Procedures for computing irreducible representations are also important; but im-
proved methods for finding them require considerable extension of elementary group
theory. Such extensions have been made (refs. 4 and 5) but will not be described herein.



Recently, Harter has made additional extensions enabling CT's and IR's of ray algebras
to be computed efficiently (unpublished data obtained from W. G. Harter.)

Some common finite groups, their character tables, and class algebra tables are in-
cluded in an appendix.

PROCEDURE

In a very broad outline, the procedure consists of the following five steps: -

(1) Construction of the class algebra table

(2) Construction of the regular representations of class elements

(3) Finding the eigenvalues and eigenvectors of the representation in step (2)

(4) Arrangement of the eigenvalues into collections {A(a)} , corresponding to the
given IR's, 9(01)

(5) Finding the ''columns'' in the CT using

NOIRALC

J
OC].
where
xj(a) character of jth class in ot irreducible representation (IR)
l(a) dimension of ath IR
OC:i order of jth class

A detailed description of each of these steps follows.

Construction of Class Algebra Table

This step in the procedure is conveniently divided into four substeps:

(1) The group ¢ is broken up into its classes, Ki'

(2) A table is constructed whose columns represent the classes of ¥ and whose
rows are collections of elements containing the inverses of elements of the classes. The
collection of inverses of the elements in class Ki is also a class of ¢ and will be de-
noted by K@.

(3) The group table is used to find which collections of elements occur when all ele-

ments in the class of the i! row (K@) operate on all the elements in the class of the jth




column (K.). (This is the usual convention in group multiplication tables.)

(4) The resulting collection is divided into classes, again being sure to count each
class every time it occurs. For example, K@K = 2K + 4K2 is considered a proper
entry in the 1th row and Jth column.
As an example, the class algebra table of group D3 is displayed. For D3, it hap-

pens that K@ = Ki' If the group table for D3 in appendix B is used, the class algebra

table for D3 (also shown in appendix B) is constructed immediately:

¥ 4

K, K, K,
Ko | %o Ko K,
Ky | Ky 2K, +K, 2K,
Ky | K, 2K, 3K, + 3K,

Construction of Regular Representation of Class Elements

Here, use is made of the structure constants of the class algebra C%a' These are
defined by

Z cl ok, (1)

where n, is the number of classes in ¥. The regular representation matrix R(Ka) is

obtained from the definition
_ )
Rij(Ka) = Cia (2)

The class algebra table permits the C]:wz to be ''read off'' at a glance. The proce-
dure is as follows. The dimension of the regular representation R(Ka) is n,Xn,. The
rows and columns are labeled by the classes of ¢. Thus, the first row corresponds to
the class KO, the second one to Kz, etc.

The entire representation matrix of the class of K, is obtained from one column
(the ath) of the class algebra table. The second subscrlpt of C identifies the column of

the class algebra table which is being considered. The entries in the 1th row of Rij (Ka)



are the coefficients of the classes in the ith row of the ath

column of the class algebra
table. These coefficients are equal to the number of times that class appears in the prod-
uct K;K,. Thus, an entry in the ath

really has

column of the form 2K0 + 4K3 means that one

KiKa=2K0+0K2+4K3+... v
so that the ith row of Rij(Ka) is(2 0 4. . .). Note that the order of the classes in
the sequence KO, Kz, K3 . . . must be preserved to obtain the correct representation.

Again the described procedure is illustrated by using the group D3. There are three
classes so there will be three IR's. Although the representation for KO is known, it
can be used as a check on the structure constants. From the class algebra table in the
preceding section

KiKO = Ki

; -l
Gij' Since Rij(KO) _CiO’

3
. _ j iy s i
Since KiKO = E CiOKj’ it is clear that Cio =
=1

1 0 0
RKyp={0 1 0
0 0 1

Next R(KZ) will be done in some detail. It is only necessary to examine the K,
column in the class algebra table and to write each row as a linear combination of classes
in the strict sequence KO, K2, K3. The result of this procedure takes the following form:

K0K2 = K2 = OKO + 1K2 + OK3
K2K2 = 2K0 + K2 = ZKO + 1K2 + OK3
K3K2 = 2K3 = OK0 + OK2 + 2K3

In this form, the nine structure constants C];a are explicitly displayed and

6 1 O
R(Kz) ={2 1 0
0o 0 2




In the same way, an examination of the K4 column of the class algebra table shows that

0 0 1
R(K;) =10 0 2
3 3 0

Eigenvalues of Regular Representation

The standard procedure for finding the eigenvalues of matrices can certainly be used
here. However, the collection of matrices which form a representation of a class algebra
have special properties. If proper advantage is taken of these properties, the eigenvalues
and eigenvectors can be found with far less effort than by using conventional methods.

Conventionally, for groups having a large number of classes, the evaluation of a cor-
respondingly high-order determinant is required to obtain the characteristic equation. A
computational technique will be described which may result in a considerable reduction of
computation in such cases. This technique is well known but does not appear to be widely
used for this purpose.

The method is based on the fact that the first n, powers of each class Ki of a finite
group 9 are linearly dependent. The equation expressing this dependence is like the
Hamilton-Cayley equation for the class K;. This equation is readily obtained from the
class algebra table and immediately yields the characteristic equation for R(Ki)’ the
regular representation of Ki' The procedure will be illustrated by finding the eigen-

values of R(Kz) of D3. The results of repeated multiplication of K2 by itself are listed:

Ky = K

1 _
K1 - K,
K2 = 2K, + K

2 o+ K

3 2 _
K3 = 2K, + K3 = 2K, + (2K + Ky) = 2K + 3K,

Therefore,
3 2 _
K3 - 3K + 4K = 0

is the Hamilton-Cayley equation for K,. Consequently,



ABomia-o

is the characteristic equation for R(K,). This equation is obtainable directly from R(Kz)
by using conventional methods with slightly more algebra. From this result, the eigen-
values A =2, 2, and -1 are obtained.

It is worth noting that the characteristic equation so obtained may not be unique. Fors
example, since Kg - 3K2 - 2K0 is also equal to zero, another characteristic equation is
)\3 - 3Xx - 2=0. The roots of this equation are A =2, -1, and -1. The characteristic
equation can be relied on to contain 211 of the distinct eigenvalues (2 and -1 for R(Kz)),
but the degeneracy may fall on the wrong eigenvalue. This fact is not a serious drawback
to the use of this method. In the first place, if some eigenvalues are degenerate, then a
characteristic equation yielding only the distinct ones can always be found from a linear
relation involving powers of K less than n,. In the case of R(K2), the relation
Kg - K2 - ZKO = 0 is valid. Thus, a characteristic equation Az - A -2=0 may be used
to obtain the distinct eigenvalues A =2 and -1. The fact that A =2 is doubly degenerate
is important primarily in that two linearly independent eigenvectors belong to the same
eigenvalue. This will be shown to emerge automatically in the computation of the eigen-
vector generators discussed in the following subsection. The main point to be made here
is that a Hamilton-Cayley equation may be used to obtain eigenvalues for R(Ki) as soon as
a relation involving powers of Ki emerges. If all of the powers up to and including the
dimension of R(Ki) are used, all the eigenvalues will be obtained from the resulting char-

acteristic equation. If, while building up powers of Ki’ a linear dependence is noticed

before K?c is reached, distinct eigenvalues may still be obtained from the algebraically
simpler characteristic equation.

This same technique will be used for R(KB). It will be seen that no relation involving
powers of K3 is obtained until Kg is used:

0 ~

1 _
K} - K,
K2 = 3K, + 3K

3 = 3K + 3K,

3 _ _ _
K3 = 3(K, + 1K K,) = 3(K, + 2K,) = 9K,

3 -

From this list of powers of Kg, the Hamilton-Cayley equation K 9Kg = 0 results.
The characteristic equation 7\3 -9x = 0 yields the eigenvalues X =0 and 3.




Eigenvectors of Regular Representation

As in the preceding section, a procedure will be described which, while not new, does
not seem to be widely used for the purpose at hand and does seem to be a rather efficient
way to find the eigenvectors. One simply constructs what, in this report, will be called

the eigenvector generators G)\ , which are defined by
)

0. 1 -]
G)ﬁ = 11 R(Ki) - A0
Akyéxj
where I is the unit matrix. The matrix Ggi? contains, as columns, all of the eigenvec-

tors of R(Ki) belonging to the eigenvalue Aj .] This quantity is directly proportional to
Harter's unit dyads (ref. 4). The number of linearly independent columns (or eigenvec-
tors) is equal to the degeneracy of A.. This is the reason that there is no loss of infor-
mation about the degeneracy of the eigenvalues in using the Hamilton-Cayley equation

Kg - K, - 2K0 to find eigenvalues of R(Kz). The fact that A = 2 is doubly degenerate

immediately shows up in the form of ng). T hus,

DN =

{2 - [R(Kz) - (-1)1] - :

It is clear that G(z) has two linearly independent columns, so A =2 is doubly de-
generate. It is convement to define the symbol V&) k a8 the kth linearly independent

column of Gg). These quantities are the eigenvectors. If this procedure for finding

]
eigenvectors is unfamiliar, one may note that

2
sz ,)1

and
0
(2) _
V2,2— 0

are independent column vectors of G(ZZ). Also,



- = 2v(2
R(K,) | 2 4)=2vy)
0
and

0 0
- - 2v(®
R(K,) <1) =1 0 )=2Vy7

2

Therefore, the correctness of the assertion that V(zz)1 and V(z) are eigenvectors

of R(Kz) belonging to the eigenvalue X = 2 has been demonstrated Slmllarly,

2 1 0
¢@ - [, - 21] {2 -1 o
0 0 0

so that only the eigenvector

(2) 1
vy = (-1

0

is obtained this time.
Before computing the G(3)'s, it is well to observe that the regular representation of
the classes Ki is a faithful one so that

e

R(K)R(K)) = RKK) =Zc{ R(K)
=1

Thus, the class algebra table may be used to avoid multiplying matrices in cases where
more than two distinct eigenvalues exist for R(Ki). As an example,

o = [Rixy - 31][R(ky - (-30] = RK,)? -
But

R(Ky)" = R(K2) = RGK, + 3Ky) = 3R(K) + 3R(Kp)




Thus,

2 1 0
oY = 3Rk, -61=3(2 -1 o0
0 0 0

*No new eigenvectors are obtained <Vg3) = V(_21)> However, from Gg3) and G(_%), the
eigenvectors

¥

1
V(33) = 2
3
and
(3) _
vy = 2
-3

are obtained.

Matching the Eigenvalues

A character table (CT) is in effect a collection of traces of IR's of the group. As
such, all of the entries in a given row of a CT belong to the same IR. Up to now the
eigenvalues are arranged in sets {)\i} according to classes Ki' For a specific IR, 9(0’),
the character Xga) assigned to class i is associated with a specific member of the set

Ai . It is therefore required that for a given 9(0[), a single eigenvalue be picked from
each of the n, sets { Ai} and that these eigenvalues be arranged in a new set

{x("‘)} = Ag"‘), A(la), Ce Aga)

(¢

all of which will then be associated with the given Q(Ol) . Such a procedure will be called
matching the eigenvalues.
As a guide to matching, it may be noted that V‘g3) was equal to V(_zl) in the pre-
1
ceding section. This means that the column vector |-1 | was an eigenvector of R(K2)
0



belonging to the eigenvalue A = -1 and simultaneously it was an eigenvector of R(K3) be-
longing to the eigenvalue A = 0. This is not an accidental result. The collection of eigen-
values )\a} has associated with it a single column vector V% which has the property

o

a _ o
RK)V" = N

s i=0,2 ..., 0,

The vector VY is thus a simultaneous eigenvector of every R(Ki). When this property
is used, A=0 from R(Kg) and X = -1 from R(K,) belong to the same set {Aa}. Every
set {Aa will contain the n,-fold degenerate eigenvalues X =1 from R(KO) so that the
complete set found is

Ky Ky Kq
o a o

Similarly, one finds that both Vg3) and V(_?é) are eigenvectors of R(Kz) belonging to
the same eigenvalue A = 2, so that the remaining matched sets are

Ko Ky Ky
1 2 3
1 2 -3

(It turns out that neither ng)l nor ng)z are eigenvectors of R(K3). However, the
. ot @ ,v@ L@ 2 _v@ (O -
linear combinations V2 1t V2 9 (- V2 ) and V2,1 - V2,2 (— V3 ) are simultaneous

’ >

vectors of R(KZ) and R(K3).)
The rest is a matter of convention. The most common convention is the listing of the
characters in order of increasing dimension of the IR. The relation

1 ["j(a)]zz 1

Og ocj [l(a)]z

is valuable in arranging the table, If the matched set

10




O 9 g

is picked to be associated with 9(0), then it is found that

-

1
: o]

Similarly, if {7\(2)} =1, 2, -3 and {)\(3)} =1, -1, 0 (where the sequence in each case
corresponds to KO’ K2’ K3) are used, it is found that Z(z) =1 and 1(3) = 2.

=1

Columns of Character Table

All of the necessary numbers are now available. Substitution of these numbers into
the relation

x-(a) = l—(a) A.(a)
j o 1
S

allows construction of the following completed character table:

0 Ky Kq

9(0) X(()O) =1 X(zo) =1 Xgo) =1

9(1) ng) =1 xgz) =1 XgZ) = -1

5@ | W.p @o1 Do

Character Table for D, (~Quaternion Group Q)

In the preceding description of the procedure used in obtaining character tables, D3
was used to illustrate each step. After all the steps were completed, the character table

of D3 was displayed. Another example is now worked out in detail - the character table
for D4.

11



The group table for Dy is shown in appendix B. From it, the following class alge-
bra table may be readily constructed:

K, K, K3 Ky Kg
Ky K, K3 Ky Kg
Ko K0 K3 K4 Kg
K3 K3 2K0 + 2K2 2K 2K,
Ky Ky 2K5 ZKO + 2K2 2K3
Kg Kg 2K4 2K3 2K0 + 2K2

Since there are five classes, the regular representation of the classes consists of

5 by 5 matrices. These may be constructed from the structure constants displayed in
this class algebra table. They are as follows:

1 00 0 0 6 1 0 0 0O 0 01 00O
01000 1 00 0 O 0 0100
RKy)={ 0 0 1 0 0 RKy)={ 0 0 1 0 0 R(Ky)=| 2 2 0 0 0
0 0010 0 0010 0 00 0 2
0 0 0 0 1 0 0 0 0 1 0 00 20

00010 0 00 01

0 0010 0 0 0 0 1

RK)={ 0 0 0 0 2 R(Kg=| 0 0 0 2 0

2 2 0 0 0 0 0 2 00

0 0200 2 2 0 0 O

The eigenvalues of R(Kz) can be obtained easily directly from the matrix itself.
Thus,

o-132-1p=0

is the characteristic equationand A =1, 1, 1, 1, -1 are the eigenvalues:

12




6l - [R(Kz) - (-1)1] -

O O O -
O O O = =
O O N O O
o N O O O
N O O O ©

. Therefore, as expected, there are four linearly independent eigenvectors belonging to
A=1:

1 0 0 0
(2) : (2) 0 (2) O (2) .
2) _ _ 2) _ -
Vi;iity O Via=| 1 Vijs=| © Viia=l O
0 0 1 0
0 0 0 1
The eigenvector generator for A = -1 is
-1 1.0 0 O
1 -1 0 0 0
6@ =[rky -1]=[ 0 0 0 0 o
0 0 0 0 O
0 0 0 0 O
Therefore,
1
-1
vd o o
-1
0
0

The eigenvalue XA = -1 is nondegenerate. Therefore, we may try operating on it
with R(K3) to see if it is an eigenvector of R(K3) also:

/0N

o ©

2 - ov(®
R(KV? - - ov2

o O

13



Therefore V(_21) is an eigenvector of R(K3) belonging to the eigenvalue A =10 of
R(K3). Thus, the matching

has resulted.
Operating on V(_zl) by R(K4) and R(K5) would show that V(_21) is also an eigenvector -
belonging A = 0 of each of these matrices also so that a complete matching set {A(a)} is

obtained:

In this example, however, repetitious computation may be avoided by noting that the
class structures of K3, K4, and K5 are all the same; that is,

2

K3

“K2-K2-
=Ky = Kg = 2K, + 2K,

0

Thus, the same Hamilton-Cayley equation (and therefore, the same characteristic equa-
tion) is obtained for each of these classes. However, the eigenvector generators are not
the same.

The characteristic equation for each of the classes is

A3 - 4n=0
Therefore, A = 0, +2 are the distinct eigenvalues.

In order to find the degeneracy of these eigenvalues, the eigenvector generator for
K3 is examined:

o - Rk, - 21] [Reky) - (-2)1] - 2[R(K2) - R(Ky)|

. 2 2 4 5
(Notce;(gl)xa)t since R<K4> = R<K5> = 2R(KO) + ZR(KZ), Gg ) and Gg ) are also the same
as .
0

14




(=
o O O =

-

Therefore, there is only one eigenvector and A = 0 is nondegenerate. (V83) = V(_zl), as
was found earlier.

¥ Next Gg3) is examined:

cl - [R(K3) -0- 1] [R(K3) + 21] = ZI:R(KO) + R(K,) + R(K3)]

1 1 1 0 0
1 1 1 0 0
=212 2 2 0 0
0 0 0 2 2
0O 0 0 2 2
Thus, A =2 is doubly degenerate:
1 0
(3) : (3) 0
3 3 _

V21=| 2 Va,2=| ©

0 1

0 1

Now for D4, each R(Ki) has five roots in its characteristic equation. For R(K3),

A =0 is nondegenerate and X = 2 is doubly degenerate, so the remaining two roots must
both belong to X = -2. Therefore, A = -2 is doubly degenerate. However, G(_32) must be

examined in order to obtain Vg) 1 and V(_%) 9 explicitly:
b

b

4 0 0
1 -1 0 0
@2 -2 o 0
o 0o 0 0 -2

\0 0 0 -2 2/

15



so that

1 0
1 0

(3 _ ®) _
Vi, 1= -2 Vi 2= ©
0 1
0 -1

The eigenvector generators for R(K4) and

Thus,

1 1
s 11
afP - 2[R(KO) + R(K,) + R(K4)] -2{ 0 o
5 2
0 0

11

(4 11

c® - Z[R(KO) + R(K,) - R(K4):| =2 0o o

2 -2

0 o

and

1 0 1

(4) ° (4) 0 (4) °
Vai1=| 0 Va,2=| 1 Vig 1= 0
2 0 -2

0 1 0

1 1

i 11

et - Z[R(KO) + R(K,) + R(Ks)] 2]l 0 o

0 0

2 2

11

) Lo

¢ - 2[Rk + R, - RKg)| =2 o o

0o o

2 -2

16
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o N O O

SO NN O O

R(K5) are different from those of R(K3).

1 0
1 0
0 2
2 0
0 2
10
10
0 -2
2 0
0 2
0
) 0
vid .= 1
0
1
0 1
0 1
2 0
2 0
0 2
0 -i
0 -1
2 0
2 0
0 2




»

and

1 0 1 0
1 0 1 0

(5 _ (5 _ v® v® _
Voi=| © Voa=| 1 V1= 0 Viga=| 1
0 1 0 1
) 0 -2 0

The rest of the matching in this case is not entirely a mechanical procedure. Each
simultaneous eigenvector which can be used to obtain a set {A @) is expressible as a
particular linear combination of eigenvectors of a given R(Ki) belonging to the degenerate
eigenvalue )\i of that matrix R(Ki). A certain amount of trial and error is required in
such cases to find the simultaneous eigenvectors. However, some general observations
can reduce the total number of trials (and thereby some of the '""error''). For instance,
each of the eigenvectors of R(K3) R(K4) and R(K5) belonging to degenerate eigenvalues
are expressible as linear combinations of the four elﬁe)nvect(zr)s of R(Kz) belonging to

= 1. Therefore, any linear combination of such V**/'s, V'"/'s, and V'"/'s is auto-
matically an eigenvector of R(Kz) belonging to A = 1.
These comments may be readily applied to the construction of the simultaneous eigen-

vector

<
n
1t
(I I R

The linear combinations of eigenvectors of R(K3), R(K4), and R(K5) which go to
make up this vector are

S _ y(3) 3) _ (4 (4 _ (5 (5) _ (2 (2) (1) (1)
vi=vP . zvg,)2 = v w2y = v av®), - v, v vy v av(Dy s avil),

Therefore, another matched set is obtained. Namely,

17



Similarly, trying

1
1

(3) (3
V2, 1 = 2V2’ 2 - 2
-2
-2

shows that

S _ -v9 4 _y® (%)
\' 2 -V_2,1+2V_,Z-V_2’1+2V_2’2
- v{2 (2 (2) (2)
—Vl’l +2V1,2 - 2V1,3 - 2V1’4

so that another matched set is thereby obtained:

1 2 -2 -2

The trials Vg‘) 1+ 2V(_32) 9 and V(_32) 9 - 2V£32) 9, respectively, are found to result in the
b b b

)
remaining two linearly independent simultaneous eigenvectors

1
S 1
= S _
Vg = -2 Va= -2
2 -2
-2 2

18




g, these matched sets can now be

used to write the diagonalized R(Ki) matrices in a form suitable for obtaining the charac-
ters of D4. These are

If the nondegenerate eigenvector V(_zl) is called V

There are five classes and therefore five IR's for D4. Therefore, the only solution

5
2
to the equation E [z(o‘)] % -8 is 10 =@ ;O ;@ - ang 19 -2, The
o=

class structure is such that 0C0 = 0C2 =1 and 0C3 = °C4 = 005 = 2. The character

@)
table for D 4 is now obtained immediately (note that 2 J' denotes jth IR of dimension
i X i, not counting 9(0) asa 1X1): '

Ko Ka K3 Ky K5
N TN . TN RN I
RS @e1 @1 @1 @eoa @-a
o2 Wea1 @1 Pea Po1 ©®-a
9‘13) NI N N I C I
0@ |y P2 oo P-o -0

19



CONCLUDING REMARKS

A systematic procedure for constructing the character table of a given finite group is
presented. Although the individual sections of the procedure are not original, the collec-
tion of procedures would seem to be justified on the grounds that they make the task of
computing group character tables much more straightforward than previously published
procedures. Each step in the construction of character tables is illustrated by worked
out examples. An attempt was made to make the report self-contained by including an

appendix of group tables, character tables, and class algebra tables for many of the com-
mon finite groups.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 22, 1968,
124-09-01-05-22.
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APPENDIX A

SYMBOLS

character table

structure constant for an algebra

th class

number of elements in j
(order of class)

ath irreducible representation

of a group ¥

eigenvector generator for class
Ki which generated eigenvec-
tors belonging to eigenvalue
)\j of representation R(K;)

group
element of group
irreducible representation

ith class of group

. . . a
linear dimension of 9( )
number of classes

regular representation of the
class algebra for class Ky

representation

trace or sum of diagonal ele-
ments of a matrix

kth eigenvector belonging to
eigenvalue A, of representa-
tion R(Ki)

eigenvalue

character; trace of irreducible
representation

root of 1 (For a cyclic group of
order n, w= e2m ny

~ is isomorphic to (e.g., D4~Q)
Left superscript:

o order of group

Right superscripts:

ij on irretcll]ucible representations
the j irreducible represen-
tations of dimension i X i, not
counting D(O) asa 1x1

0 on irreducible representations
the irreducible representation
which represents every ele-
ment of the group by 1

S simultaneous eigenvector
Right subscript:
@ denotes fact that attached sym-

bol is for the inverse of that
for subscript i

Groups:

Cn cyclic group of order n

Dn nth dihedral group

T tetrahedral group

T d cube group

Group elements:

R,r rotations

p reflections

i inversions (reflection through
origin)
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APPENDIX B

GROUP TABLES, CHARACTER TABLES, AND CLASS ALGEBRA
TABLES OF SOME COMMON FINITE GROUPS

The material in this appendix is taken from lectures delivered by W. G. Harter at
NASA in the summer of 1966. As is usual, an entry in a table is the result of group oper-

ation by the element in the column heading the entry followed by group operation by the
element in the row heading the entry.

CYCLIC GROUPS, C_

(Each element of C isina class by itself, w = exp(27i/n))

Group Table Character Table
Co
K, K,
1 R
11 R
R|R 1
Cs
K, K, Kg
1 R R? 1 R R
1 |1 R R? 20 |1 1 1
2 {rR2 1 R AL U IR
R [rR R® 1 @I, 2 .
Cy
K, Ky K3 K4
i R R® RS 1 r g RS
1 |t r R RS 20 [ 1 1 1 1
rR¥|r® 1 R R? @)1y 0 -
22 rR2|r? R® 1 =R W)l y 4 1 4
R |R RrR? R® 1 A e




gp=1
g@)= R
g@= R
8@~ P1
8®)= P2

g©= p3

Group Table

GROUP D,

Character Table

Kg Ky K3 Ky

(g®= gl, i= 1, o e ey 4)
2 52 52
1 R{ R; Rj
2 2 2 (0)
1 1 Ry R; Rj 9
(1,)
2 | 2 2 2 91
Rf |[Rf 1 R3 Ry
(15)
2 | 52 2 2 9 2
R, [R, R3 1 Rj
(1)
2 52 2 93
Ry [R5 Ry R] 1
GROUP D,
Group Table
80|82 €3 |84 B85 B
2
1 |{R R |p; Py pg
2 )
1 |R R|p; Py pg 2
2
R 1 R |pg Py Py oW
2
Py |Ps Py 1 R2 R
2
Pgy | Py Pg R 1 R
Pylpy py |2 R 1

Character Table
Ko K, K3

{R, R*} {p,}

1 1 1
1 1 -1
2 -1 0

Class Algebra Table

Ky K, Kq
K, 2K,+K, 2K,
K3 9K 3K0 + 3K2

3
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GROUPS Dy AND Q

Group Table for D4

gO g9 83 84 |85 &g [ 87 £y
2 3
1 R R R P1 pz P3 p4
2 3 ga=1
HO) 1 |[R"| R R [Py py |Pg Py ©
g@)= -1
g@R2 1 |R®* R |py py|p, Py )
eanfR|R |1 R% |ps p, |0, b @
® 3 Pg Py Py e@- |
e@|R [RP[R? 1 [Py Py Py oy 8@ -}
E®)|P1| P2 | P3 Py |1 r? |rR RS O
g -k
g@ Po | P1 | Py Pg R2 1 R3 R @
3 2 e@= &
€@)|P3 | Ps| Pz Py |[R° RI1 R
e@|Pa| P3| PPy | R RP|RE 1
Character Table for D4 or Q
Ko Ky Ky Ky Ky
D
3@ (1 1 1 1 1 Q4
(1)
2 Yy 1 1 4 4
(1,)
221 1 a1 1 4
(1,)
2 ¥|1 1 a a 1

9@ |2 2 o o o

24

Group Table for Q

8o €8y B3 84 8By B 8 gy

1t-1} i -i|j -] k -k

Class Algebra Table for D4 or Q

K K K Ky Ks
r® (R, R’} {9-1’ pol  {pg, Pyl
-1 {4, -1} 5, - (K, k)
Ky K, Kq K, K
Ky Kp Ky Ky K
Ky Ky 2Kj+2K, 2K 2K,
K, K, 2K, 2Ky +2K, 2K,
Ky K, 2K, 2K;  2K; + 2K,



-]

® 6 6066666 06

Group Table

GROUP Dg

€ |82 83 |8 ©5 18 €7 Bg B9 Eyp
1 (R rR*|R% R¥|p; b, Py P, b
1 |R BB R0y 0y g oy pg
R 1 R R RPlog oy by Py 0y
R | B 1 |R® ’'lp, p3 oy 05 Py
IR |1 R Py Ps Py Py P3
R IR R R 10pg by b5 0 Py
Py | Pg Py|Py Pg |l rR* rR® B2 R
Py | Py Pylps Py |R 1 R*R® R
Py | Py Pyl ps |RE R 1 R R
Py | Py Pslpy oy [R3 RZ R 1 R
P5 | Py py|Py py |R* RS RER 1

0)
oM
51

(2
2

Character Table

Ko K Ry K4
1 1 1 1
1 1 1 -1
2 -1 - vg -1+ \/-5_ 0

2 2
9 = 1+ \/E; -1- \/g 0

2 2

Class Algebra Table

Ky XK K4 Ky
1 (R R*} (R%R%) {p;}
K K K3 K,
Kg Ky + K3 2K0 + K2 2Ky
K4 2K4 2K4 5K0 + 5K2 + 5K3
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Group Table

GROUP T

So |82 €3 84 85 |8 By 85 &g |Bi0 €11 Ep2
Ulrp vy g vy (] 1 o} o3 |R] B R
1 ry Ty Ty Iy r% rg r% ri Ri Rg R%
r% 1 R% R% R% ry I3 ry I, ri r% r%
r% R% 1 R% Rg ry ry ry ry r% r% ri
r% Rg R:Z3 1 Ri ry T4 rg Ty rg ri r%
ri R% Rg R% 1 rg Iy ry T, r% r% rg
ry r% ri rg r% 1 R% R% R% rg Tq ry
|ty ti IR 1 R{RY|r r, 1y
rq ri r% r% rg R% R% 1 R% ry 1y ry
ry rg r% r% r‘z1 Ri R:23 R:z2 1 rg Ty ry
R% Ty rg Iy Ty rg r% ri r% 1 R% Rg
By [ty ¢y 7y vy 7y x3 i x5 |R3 1 RE
Ry ryrg 1 mp[rf o3 5 o] | R 1

50
e

S

)

S8 ©

Character Table

Ko K2 K3 K4
2 2

1 {r;b {rf} {Ry)

1 1 1 1

1 w w* 1

1 w* w 1

3 0 0 -1

- eZni/S

Class Algebra Table

Ko K, Kj Ky
Ky 4Kq + 4K, 4K, 3K,
K, 4K, 4K + 4K, 3K,
K, 3K, 3K, 3K, + 2K,



© 6666666 8

GROUP T4 OR O

Group Table

0|8 B3 B4 85 B 87 &3 Bg |B10 B11 B1a | B13 B14 815 E16 B17 818 |B19 G20 S21 S22 823 Eo4
Ve 1y vy 1y 13 5 75 54 |R; R RJIR, Ry Ry R} A P A T P A
ey 1y vy v 13 15 13 5|R8 B RIR R Ry R R} R3 Iy Gy iy iy i g
it R R R r o1y o 5 R R R 4 iy g |Ry 1 Ry iy 1, Ry
IR 1 RR oy ory ol 2 iy, 4 omom, R g 4y Ry R I Ry g
3 RBR 1R, yrlg 3 2R oy g i, Ry Rj[i; Ry iy Ry i R}
BB R R 1oy iy R is Ry iy Ry |R} i3 3 R} Ry 1
g g 1 B Ry ol 4 4 Ry R OR R} 4 R} i, i R}
pith Tt Ry 1 Rl Rylr n oty Ry R} 4, i iy RS g Ry Ry i R i
iy 3 3 3R R Ry oy ony R B R} i 4 s R} i Ry iy Ry
gl A R 1y o, nlR) gy Ry iy R} i |R; g 1, R} Ry i
Rilry g 1p vy 13 13 1§ 3|1 Ry RIR] i i Ry B i R, B} R} Ry g g
Ry vy vy 7y 15 13 1} i3 R 1 Rlis R iy g Ry g i, & Ry Ry R R}
Ry|rg vg 1y 1 1§ 13 13 i RER 1li 4, R} i 1 Ry R Ry i iy R} R
R|R, 1, B} i i3 R} iy Ry Ry i3 g |1 1, 5 R o, silrn v 13 F R OR
RY|Ry i3 iy R ig Ry B} ig|1; Ry iy (13 1 1, 13 R R R r oty 15 i
R} |R; R} ig ig 4 G Ry Rl i iy Rylry 15 1or, 17 Bl 5 RER r, o
Byliy B3 4, Ry R} i Ry iy R} fg i [R} rp i3 1 ny x|y r, o3 B OR
Rplig Ry BY 4y B} 45 4 Ryl R} 4|3 B 1 o 1 owy R R oty oty 1p o
Rylig is Ry Ry R Ry iy iy (i iy Ri|ry 13 ®or, 2 1| 2 & & T3
i |R§ g iy Ry Ry ig 5 R} (R} i Ry|rd R o 3 R o1 B oryor, oo
iy iy R} Ry iy ig R} Ry ig (Ry iy R3|:f RS ot R on R 1 or, o o
i |R} Ry 15 g R R i iy [Ry R} iy |mp f REory 1 R 4 1 RE n Ty
i4 15 ig Rf Ry 4 iy Rng Rg Ry i3 Ty ri R% ry r% R% rg r% R% 1 L
is|ip Ry i) R} iy Ry ig R |ig R} R, |RE v, 5 R o, t3|ry 1y 13 1 1 R
is |RS 1 Ry i Ry i Ry |i5 Ry R{|R rp 1} B} oy ff|r, r, ot 5 R 1
Class Algebra Table Character Table

Ko K K3 Ky Ky

1odm 2t (') R, RY ()

" *2 *3 4 % 5O |4 1 1 1 1

K, 8K+ 4K, + 8K, 3K, 4K, + 4K 4K, + 4K, oo 1 . . » »

K, 3K, 3Ky + 2K, K, + 2K 2K, + Ky 2@ | , o ) 0 0

K, 4K, + 4K, Ky+2K5 6K+ 9Ky +2Ky 3K, + 4K e o " I X

Kg 4K, + 4K 2K, + Ky 3K, + 4K, 6K + 3K, + 2K, 9%) 0 1 L 1
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